Probabilité 1, L1 MMIA, Corrigé rapide du partiel du 2 mai 2007

Exercice 1

1. \[A_1 = [0, 1], \ A_2 = [0, 3/2], \ A_1 \cup [1/2, 5] = [0, 5], \ A_1 \cap [1/2, 5/4] = [0, 1/2] \cup [1, 5/4], \ \cup_{n \in \mathbb{N}} A_n = [0, 2], \ \cap_{n \in \mathbb{N}} A_n = [0, 1]. \]

2. \[B_1 = B_2 = B_3 = [1/2, 2], \ B_2 = A_2 = [0, 3/2], \ B_1 = A_4 = [0, 7/4], \ B_0 = A_6 = [0, 11/6]. \]

3. La suite \((B_{2n})_{n \in \mathbb{N}} = (A_n)_{n \in \mathbb{N}} \) est croissante pour l’inclusion. La suite \((B_{2n+1})_{n \in \mathbb{N}} \) est constante et \(\forall n \in \mathbb{N}, \ B_{2n+1} = [1/2, 2] \).

4. \(\cup_{n \geq N} B_n = [0, 2] \). Si \(N \) est pair,

\[
\bigcap_{n \geq N} B_n = \left(\bigcap_{2p \geq N} B_{2p} \right) \cap \left(\bigcap_{2p+1 \geq N} B_{2p+1} \right) = A_N \cap \left[\frac{1}{2}, \frac{2}{N} \right]
\]

et de même, si \(N \) est impair, \(\cap_{n \geq N} B_n = [1/2, 2 - 1/(N + 1)] \).

5. \(\cap_{N \geq 0} \cup_{n \geq N} B_n = \cap_{N \geq 0} [0, 2] = [0, 2] \) et

\[
\bigcup_{N \geq 0} \bigcap_{n \geq N} B_n = \left(\bigcup_{N \text{ pair}} \left[\frac{1}{2}, \frac{2}{N} \right] \right) \cup \left(\bigcup_{N \text{ impaire}} \left[\frac{1}{2}, \frac{2}{N + 1} \right] \right) = \left[\frac{1}{2}, \frac{2}{3} \right].
\]

Exercice 2

1. Nous avons bien sûr \(\sum_{i=1}^{+\infty} q^i = 1/(1 - q) \).

\[
\sum_{i=1}^{+\infty} iq^{-1} = \frac{d}{dq} \left(\sum_{i=0}^{+\infty} q^i \right) = \frac{1}{(1 - q)^2}, \quad \sum_{i=1}^{+\infty} i(i - 1)q^{-2} = \frac{d^2}{dq^2} \left(\sum_{i=0}^{+\infty} q^i \right) = \frac{2}{(1 - q)^3}
\]

2. La constante \(\alpha \) est telle que \(\sum_{j=1}^{+\infty} \sum_{j=1}^{+\infty} \mathbb{P}((X, Y) = (i, j)) = 1 \):

\[
1 = \sum_{j=1}^{+\infty} \sum_{j=1}^{+\infty} \frac{\alpha}{2^{j+i}} = \alpha \sum_{j=1}^{+\infty} \frac{1}{2^j} \sum_{i=1}^{+\infty} \frac{1}{2^i} = \alpha \sum_{j=1}^{+\infty} \frac{1}{2^j} \times \frac{1}{2^j - 1 - 1/2} = \alpha \left(\sum_{j=1}^{+\infty} \frac{1}{2^j} - \frac{1}{4^j} \right) = \frac{2}{3} \alpha.
\]

On en déduit \(\alpha = 3/2 \).

3. En utilisant la valeur de \(\alpha \) que l’on vient de trouver :

\[
\mathbb{P}(X = i) = \sum_{j=1}^{+\infty} \mathbb{P}(X = i, Y = j) = \sum_{j=1}^{+\infty} \frac{\alpha}{2^{j+i}} = \frac{\alpha}{2^j} \times \frac{1}{2^j - 1 - 1/2} = \frac{\alpha}{2^{2j-i-1}} = \left(\frac{1}{4} \right)^{i-1} \frac{3}{4}.
\]

La variable aléatoire \(X \) suit une loi géométrique de paramètre \(p = 1/4 \).

4 et 5. L’espérance et la variance d’une loi géométrique de paramètre \(1/4 \) sont \(\mathbb{E}(X) = 1/p = 4 \) et \(\text{Var}(X) = (1 - p)/p^2 = 12 \).

6. On a \(\mathbb{P}(Y = j) = \sum_{i=1}^{j} \frac{\alpha}{2^{i+j}} = \alpha \left(\frac{1}{2^j} - \frac{1}{4^j} \right) \).

7. En utilisant la question 1 :

\[
\mathbb{E}(Y) = \sum_{j=1}^{+\infty} j \mathbb{P}(Y = j) = \alpha \left(\sum_{j=1}^{+\infty} \frac{j}{2^j} - \frac{j}{4^j} \right) = \frac{3}{2} \left(\frac{2 - \frac{4}{9}}{4} \right) = \frac{7}{3}.
\]

8. Les variables \(X \) et \(Y \) ne sont pas indépendantes puisque les valeurs que peut prendre \(Y \) dépendent des valeurs de \(X \) et réciproquement.

9. De même qu’à la question 1, on peut montrer que \(\sum_{j=1}^{+\infty} q^j = q^j/(1 - q) \) et \(\sum_{j=1}^{+\infty} jq^{j-1} = (iq^{-1} - (i - 1)q^j)/(1 - q)^2 \).

Alors :

\[
\mathbb{E}(XY) = \sum_{i=1}^{+\infty} \sum_{j=1}^{+\infty} \frac{\alpha ij}{2^{i+j}} = \frac{3}{2} \sum_{i=1}^{+\infty} i \sum_{j=1}^{+\infty} \frac{j}{2^j} = \frac{3}{2} \sum_{i=1}^{+\infty} i \times \frac{i + 1}{2^{i-1}} = \frac{3}{4} \sum_{i=1}^{+\infty} \frac{i(i + 1)}{4^{i-1}} = \frac{3}{4} \sum_{i=2}^{+\infty} \frac{(i - 1)i}{4^{i-2}} = \frac{32}{9}
\]

en utilisant la question 1. Enfin \(\text{Cov}(XY) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) = \frac{32}{9} \times \frac{7}{3} = \frac{-52}{9} \).
Exercice 3

Soit \(X \) une variable de Poisson de paramètre \(\lambda > 0 \) et \(Y \) une variable aléatoire de Bernoulli de paramètre \(p > 0 \). Les variables aléatoires \(X \) et \(Y \) sont indépendantes.

1. Pour une variable de Poisson : \(\mathbb{E}(X) = \lambda \), \(\text{Var}(X) = \lambda \). Pour une variable de Bernoulli : \(\mathbb{E}(Y) = p \) et \(\text{Var}(Y) = p(1-p) \).

2. C’est un calcul fait en TD :

\[
\mathbb{E}\left(\frac{1}{1+X} \right) = \sum_{k=0}^{\infty} \frac{1}{k+1} \frac{\lambda^k}{k!} e^{-\lambda} = \frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k+1}}{(k+1)!} e^{-\lambda} = \frac{1}{\lambda} \sum_{k=1}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = \frac{1 - e^{-\lambda}}{\lambda}.
\]

3. Comme \(X \) et \(Y \) sont indépendantes, \(1/(1+X) \) et \(Y \) sont indépendantes et :

\[
\mathbb{E}\left(\frac{Y}{1+X} \right) = \mathbb{E}(Y) \times \mathbb{E}\left(\frac{1}{1+X} \right) = \frac{p(1 - e^{-\lambda})}{\lambda}.
\]

4. Toujours par indépendance de \(X \) et \(Y \) : \(\text{Var}(Y + X) = \text{Var}(X) + \text{Var}(Y) = \lambda + p(1-p) \).

Exercice 4 (Barème prévu : 8 points)

1. Les questions A ont été traitées en TD :

\[
nC_m^n = \frac{n \times m!}{n!(m-n)!} = \frac{m \times (m-1)!}{(n-1)!(m-n)!} = mC_{m-1}^{n-1}.
\]

2. Soit \(n \in \mathbb{N}^* \) fixé.
Initialisation Pour \(N = n \), \(C_n^n = 1 = C_{n+1}^n \).
Récurrence Supposons que pour \(N \geq n \) fixé, \(\sum_{m=n}^{N} C_m^n = C_{N+1}^{n+1} \). Montrons cette propriété pour \(N + 1 \) :

\[
\sum_{m=n}^{N+1} C_m^n = \sum_{m=n}^{N} C_m^n + C_{N+1}^n = C_{N+1}^{n+1} + C_{N+1}^n = \frac{(N+1)!}{(n+1)!(N-n)!} + \frac{(N+1)!}{n!(N+1-n)!} = \frac{(N+1)!}{n!(N+1-n)!} = C_{N+2}^{n+2}.
\]

3. \(\Omega \) est l’ensemble des suites que l’on peut réaliser avec \(n \) boules blanches et \(n \) boules noires. Comme les boules sont indistinguables, ces suites sont déterminées par le choix des positions des boules noires (par exemple). Le cardinal de \(\Omega \) est donc \(C_{2n}^n \).
4. Les valeurs possibles sont les entiers entre \(n \) (toutes les boules noires sont tirées en premier) et \(2n \) (la dernière boule à être tirée est noire).
5. Soit \(m \in [n, 2n] \). Si \(X = m \), la dernière boule noire tirée est tirée au tirage \(m \) et les tirages des \(n-1 \) autres boules noires sont compris entre 1 et \(m-1 \) :

\[
\mathbb{P}(X = m) = \frac{C_{m-1}^{n-1}}{C_{2n}^n}.
\]

6. L’espérance de \(X \) est donc :

\[
\mathbb{E}(X) = \sum_{m=n}^{2n} mC_{m-1}^{n-1} = \sum_{m=n}^{2n} nC_m^n = nC_{2n}^n = \frac{n(2n+1)}{n+1},
\]

en utilisant les résultats des questions 1 et 2.